

PRODUCTION TECHNOLOGIES FOR HYDROGEN AND ELECTRIC FLYING Fraunhofer IWU in Chemnitz Prof. Dr.-Ing. Martin Dix

19.04.2024 © Fraunhofer IWU

Seite 1

Profile of Fraunhofer IWU Characteristics

PARTNER FOR INNOVATIONS IN PRODUCTION ENGINEERING

From the material level to the factory level. From idea to realization.

- Foundation: July 1, 1991
- Employees: approx. 700 persons
- Research volume: over 50 M Euros
- Locations: <u>Chemnitz</u>, Dresden, Zittau, Wolfsburg
- 3 scientific fields 3 directors

Functional Integration and Systems Integration- Prof. DrosselProcess Technology- Prof. DixProduction Systems and Factory Automation- Prof. Ihlenfeldt

Chemnitz

REFERENZI FABRIK

VALUE CREATION COMMUNITY

HYDROGEN-SYSTEM - PRODUCTION

AREAS OF ACTION

- Industry and science form the hydrogen system production value creation community, are
- pacemaker for the industrial mass production of electrolysers and fuel cells and
- are working on the rapid ramp-up of their efficient, unit-scalable production, for the
- production of cost-effective systems for mass use!

MALL

 \times 0

- Developed for various hydrogen system components
- Includes possible process variants per production step
- Objective: enable a comparison of individual process variants

19.04.2024 © Fraunhofer IWU

1. Production technologies for fuel cells and electrolyzers

Innovative cell designs for fuel cells and electrolyzers

Our reference solutions for fuel cells and electrolyzers

- Adapted geometry in the port area and flow field to avoid wrinkling during rolling and for optimum weld seam guidance during joining
- Sealing concept adapted to the continuous manufacturing process

HYVENTUS V04

for electrolyzers with sheet thicknesses from 200 to 1000 μm

Dimensions: (350 x 250 x 1.7) mm³; Titanium Grade 1; $_{s0}$ = 500 µm; Plates per stack: 12 pcs.

Seite 6 19.04.2024 © Fraunhofer IWU @ Polster, Porstmann, Melzer

1. Production technologies for fuel cells and electrolyzers

Forming technologies for bipolar plates at the Fraunhofer IWU

1. Production technologies for fuel cells and electrolyzers

Our high-rate forming technology

HOLLOW EMBOSSING ROLLING AS HIGH-RATE TECHNOLOGY FOR THE PRODUCTION OF BIPOLAR PLATES

Process advantages

- o high-rate capability (continuous strip feed)
- o comparatively low process forces (incremental forming)

Service portfolio

- FE based **feasibility analysis**
- **Component and process design** (related to application and manufacturability)
- Manufacturing of demonstrators
 - → from postage stamp to DIN-A4 format

Development approaches

- Robustness of the forming process
- increase of sheet quality (flatness)
- Synchronization with subsequent processes

Rolling machine for hollow embossing of BPP for electrolysis applications

2. Production technology with highest material efficiency

Incremental sheet metal forming

Procedural principle using a (partial) die

Available at Fraunhofer IWU

- Working area: approx. 4 m x 2 m x 1 m
- Max. press force (z-direction): approx. 20 kN

AXA

*example

2. Production technology with highest material efficiency

Possible range of components – any size, any material

Part dimensions from 1 up to 4000 mm and material like Magnesium and Titanium

Seite 10 19.04.2024

© Fraunhofer IWU

Note: All components shown here were manufactured at Fraunhofer IWU or in cooperation with partners from industry and science

2. Production technology with highest material efficiency

Technology Demonstrator Silver Bumblebee®

Reconstruction of the outer panel of an Auto Union racing car in cooperation with the Vehicle Museum Chemnitz

Cost-efficient and fast forming technology for small quantities
Cycle time from CAD data set to first part within 1 week

Seite 11 19.04.2024 © Fraunhofer IWU

19.04.2024 © Fraunhofer IWU

3. Production technologies for H₂ tanks

Current challenges in their industrialization

Material

Tank must be able to withstand all operating loads at cryogenic temperatures (-253 °C) under the influence of corrosive $LH_2 \rightarrow preferred$ material: EN AW 2219

Manufacturing Process

- Detailed characterization of process parameters and limits necessary
- Efficient manufacturing and testing processes for components and modules up to the assembly of the complete tank system

Safety

Avoid leakage of highly flammable LH_2 by means of suitable design measures, safety systems and systematic non-destructive testing of all components and assemblies

Our Solution: The "ZEIT" Project (Zero Emission Industrial Technologies)

Duration: 09/2022-02/2026 Total project amount : 10 Mio. €

FIBRE

PEW Aerospace GmbH

Partner: 🌀 **AIRBUS** 🛹 CORIOLIS

Seite 13 19.04.2024 © Fraunhofer IWU @Peter Auerbach Image references: Airbus

3. Production technologies for H₂ tanks

Main processes in LH₂ tank production

Simplified technology demonstrator for process validation

3. Production technologies for H₂ tanks

Joining processes for LH₂ tank production

Range of possible joining technologies for aircraft components

Seite 15 19.04.2024 © Fraunhofer IWU @ Tibor Paizs

16

19.04.2024 © Fraunhofer IWU

Machining technologies for aerospace components

4. Production technologies for aerospace components

Digital twin of the machining process – Software TwinProCut

Process optimization

Benefits

- Time optimization of the run-in process
- Minimization of the production scrap rate
- Minimization of the rework rate
- Production-ready digital image with all production-relevant information
- Directly from the first manufactured component, which replaces the qualification model
 - Complete representation of the machining process
 - Representation of all relevant process parameters
 - Process data-based optimisation, process control and documentation

Application for work preparation, quality assurance, process analysis

Seite 17 19.04.2024 © Fraunhofer IWU @Albrecht Hänel

4. Production technologies for aerospace components

Application possibilities and Benefits of TwinProCut

Process development, validation and documentation

Optimization, quality assurance and analysis

Seite 18 19.04.2024 © Fraunhofer IWU @Albrecht Hänel

4. Production technologies for aerospace components Example – Large integral component for ATHENA telescope

Main structure of the ATHENA telescope, biggest ESA spacecraft project (~2 Bil. €), planned Launch: 2034

. اللي

- Dimensions: $\sim \emptyset$ 3000mm ; Height: H=350mm \rightarrow machined from one part
- Full machining time 2-3 month, Raw Data~ 540GB
- Visualization of the complete process steps
- Evaluation of the **interoperability** of the process characteristics
- Spatially resolved **failure analysis**, e. g. material defect or tool defect
- Process data based quality control and process documentation

Quality control of machined operation

Process visualization of machining operation

© Fraunhofer IWU

19.04.2024 © Fraunhofer IWU

5. Future Missions – Mission Future

H₂ into Sky

Seite 21

Logistics drone with integrated fuel cell system

19.04.2024 © Fraunhofer IWU @Julia Schönherr Image reference (bottom right): Drone industry insights: https://droneii.com/how-drone-use-optimizes-industries, 2023

Fraunhofer

THANK YOU FOR YOUR ATTENTION

Contact

Prof. Dr.-Ing. Martin Dix Fraunhofer Institute for Machine Tools and Forming Technology IWU Director Phone +49 371 5397 1402 Martin.Dix@iwu.fraunhofer.de

www.iwu.fraunhofer.de

