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Why (hybrid-)electric propulsion? Why hydrogen as a fuel?

DLR

Climate impact in CO, equivalents [Mt] in different scenarios
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= Do Nothing Use of SAF and H2
= Market diffusion of available technologies with SAF and H2 Introduction of new technologies with SAF and H2
New technologies and ops with SAF and H2 = Maximum potential assuming unlimited availability of alternative fuels
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Design Process in Aviation A#y
DLR

— Systems engineering approach based on ARP4754A
with a top-down design and validation process,

followed by a bottom-up verification Requirements
Analysis

— Safety analysis methods according to ARP4761

Incorpurated into the overall design process Understand and
Aid
Task Product Development of

Regulations
Aircraft level

Develop Novel
Technical
System level _ ¥ Solutions

Verification

Verification

Develop Safe

Verification . . |ntegrati0n
\ / Concepts

Implementation

Element level
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Challenges Associated with Hydrogen System Integration
DLR

Material and Component related Challenges
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Source: Martin Hepperle (DLR), Electric Flight — Potential and Limitations.
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Challenges Associated with Hydrogen System Integration ‘#7
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Material and Component related Challenges

Hydrogen Material Properties

At dislocations At vacancies
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Absorbed / Surface H™

Hydrogen Trapping

Unavoidable when dealing

W|th hydrogen Atmosphere
Even when special treatment is
applied to the material &
. K
surface, trapping can occur e
Trapsites. @ e ]
« @Grain and phase
boundaries
. Trapping
» Voids and cracks
« Precipitates
¢ .. Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001

Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Challenges Associated with Hydrogen System Integration

DLR
8 Material and Component related Challenges
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Hydrogen Material Properties Hydrogen Trapping Hydrogen Embrittlement
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Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Challenges Associated with Hydrogen System Integration
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o Material and Component related Challenges
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Hydrogen Material Properties Hydrogen Trapping Hydrogen Embrittlement
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Mechanisms of hydrogen embrittlement
Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001

Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Challenges Associated with Hydrogen System Integration ‘#7
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System and Aircraft Level

Hydrogen Leakage
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« Leakage is unavoidable Atmosphere
®  High diffusivity of hydrogen
5 H2
8 Leakage
O
e —> High local concentrations
= possibly inside the flammability =~ s e e
region
—> Liquid and gaseous _
hydrogen behave differently Trapping




Challenges Associated with Hydrogen System Integration
DLR

System and Aircraft Level

Hydrogen Leakage

Adsorption The enrichment of the inner material
surface with molecular hydrogen

O
O
O
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« Leakage is unavoidable

Dissociation Molecular hydrogen (H;) breaks into atoms (H)

° « High diffusivity of hydrogen e =2l

O
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@) Absorption Hydrogen atoms pass through the interface

O into the material’s internal structure

O : :

e —> High local concentrations

@) pOSS|b|y IﬂSIde the ﬂammablllty Diffusion H\}/Odurlokgen atoms advance inside the material
region

9 Liqu id and gaseous R.E' : Hydrogen atoms combine .and form
hyd rogen bEhave differently association hydrogen molecules again

Source. Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001

Desorption Hydrogen molecules are gathered on the outer
material surface and exit to the atmosphere
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System and Aircraft Level
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= Hydrogen Leakage I) Hydrogen is lighter than

IV) Hydrogen accumulates

air and immedietly on the highest point

8 dissipates on escape
o » Leakage is unavoidable
+ High diffusivity of hydrogen P [ewe@ ] TS
" y e aary A
o oy IIr .
o | | i - oy
@) -> High local concentrations N N
8 possibly inside the flammability z X IV S
O region

- Liquid and gaseous

o ] IT)When liquid hydrogen leaks, it forms III) If the upwards path is

8 hydrogen behave differently a cloud of hydrogen, condensed blocked, hydrogen moves
water and air which is heavier than to all other directions,
air. Then it evaporates including downwards

Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Challenges Associated with Hydrogen System Integration
DLR

System and Aircraft Level
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System and Aircraft Level

Hydrogen Leakage H2 Storage Boil-Off at Airport
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e Unavoidable side effect

 Reduction of efficiency of LH,
pathway

« Significant environmental
impact through H, emissions
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- New technical solutions and
considerations for airport
infrastructure




Challenges Associated with Hydrogen System Integration

System and Aircraft Level DLR
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8 Extraction Method
o « Utilization of synergies in the e e " Cirament vl e
) Stage | Stage V ,
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Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001



https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001

Challenges Associated with Hydrogen System Integration

DLR

System and Aircraft Level

Extraction Method Operational Considerations
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 Start-up and restart procedure for fuel cell system

* Rejected take-off scenario

®
o  High gradients in power demand
O . .
3 « Emergency landing scenario
®
O  Diversion to alternate airport
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Source: Jux et al.; A Standard Mission Profile for Hybrid-Electric Regional Aircraft based on Web Flight Data
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System and Aircraft Level
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Extraction Method Operational Considerations Increased Flammability
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* Increased flammability range
compared to conventional
700K | y = -228,6-x + 1557 fuels (’I O X )

(427 °C; 800 °F) Cagix L
| ’ 3813 « Auto-ignition at 585°C

600 K

(327 °C; 620 °F) * Very high laminar flame speed

500 K TP
(227°C; 440 °F) [ <— Flammability Limits ——>,

400K | > Zonal Safety Analysis (ZSA)

(127 °C; 260 °F)
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Temperature

000

300K |
(27 °C; 80 °F)

1 l 1 l 1 l 1 l 1 l 1 I 1 I 1 I 1
0 10 20 30 40 50 60 70 80 90

Percent Hydrogen in Air Hydrogen Propane

Source: W. Lanz. Hydrogen properties. 2001.
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System and Aircraft Level
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Extraction method Operational Considerations Increased Flammability
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* Increased flammability range
compared to conventional
fuels (10 x)

« Auto-ignition at 585°C

« Very high laminar flame
speed due to differential
diffusion (5 x)
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- Zonal Safety Analysis (ZSA)

Source: Video - https://www.youtube.com/watch?v=lknzEAs34r0
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Design Considerations ‘#7
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Component Level

— Material choice must meet requirements regarding all hydrogen-related
challenges and its properties (embrittlement, temperature, pressure)
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— Novel material development may be required
— Material treatment against hydrogen embrittlement may be required
—Modelling and experimental data on lifing of novel components necessary
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— Consideration of potential common mode failures

— Potentially necessary test procedures have to be anticipated in advance as
no certification regulations exist

ocoe

Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Propulsion System Level

— Zoning in the entire aircraft during early stage of propulsion system design —
particularly with regards to potential sources of ignition
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— Integration of shut-off valves and check valves
— Adequate concentration monitoring and leakage detection required
— Ventilation in hydrogen exposed zones needed

— Component placement under consideration of hydrogen dissipation and dilution
behaviour
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— Consideration of all operational scenarios during design process of the hydrogen
system

o)X X©)

— Careful evaluation of potential means of utilizing synergies in the system to avoid
common cause failure

Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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Potential Safety Guidelines

— Appropriate training of personnel to know the hazards of hydrogen
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— Recognize human capabilities and limitations
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— Isolate, vent, and purge H, lines before conducting maintenance
— Do not overload a vessel

— Avoid thermal cycling of relief system

— Oxygen content in a vessel should be < 2%
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— Cool down storage vessels slowly

__JOX®)

— Examine systems for corrosion or blistering

Source: Dimitrios Dimos, Stefanie de Graaf 2024 J. Phys.: Conf. Ser. 2716 012001
Overview of safety challenges associated with integration of hydrogen-based
propulsion systems for climate neutral aviation
https://iopscience.iop.org/article/10.1088/1742-6596/2716/1/012001
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DLR Institute of Electrified Aero Engines

Climate-friendly and quiet air traffic of the future DLR
Mission Holistic Systems Approach Location and Network
= Research on lower-emission, more " Component Techn0|ogies " Cooperation within a broad
climate-friendly and quieter aero . . competence and research network
- = Architecture and Integration of - _
engines Propulsion System = Contribution to structural change in the
» Closes gaps in the portfolio of German = Aeronautical Requirements and JI[_equha;'][SOrgslon Lol LU S
aviation propulsion research Control of Propulsion System
= Environmental Impact and Sensor = Hybrid Electric Propulsion Cottbus
Technology (HepCo) - test facilities as part of an
o _ cooperative test bench landscape in
= Test facilities and infrastructure Cottbus

= Research on novel, low-emission aircraft engines for civil aviation
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