

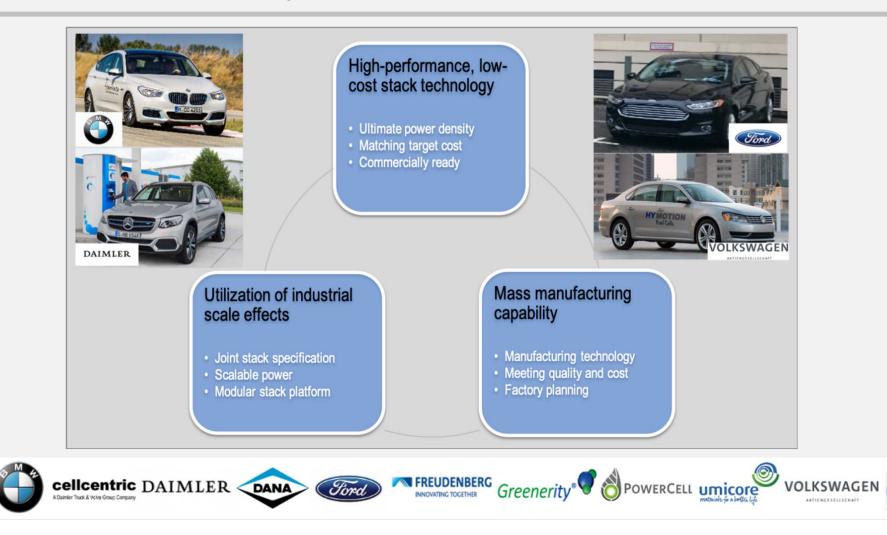
AutoStack Industrie (ASI) Consortium -

Advanced High Performance Stack Technology for **Automotive Volume Production**

The Results

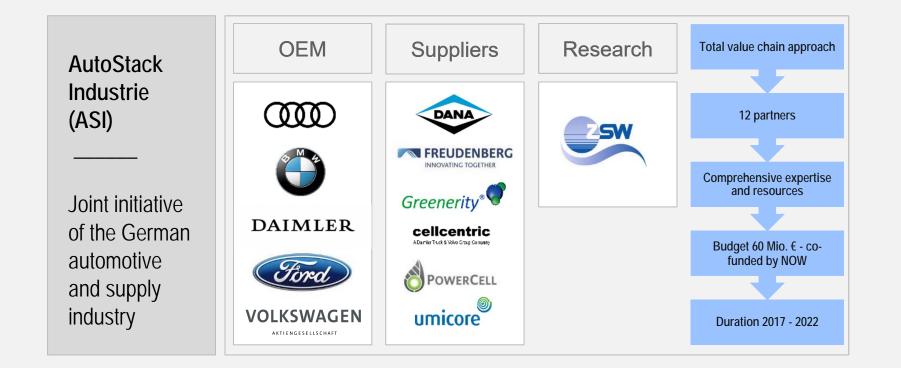
AERO Hydrogen and Battery Summit 17.04.2024 By André Martin and Ludwig Joerissen

For



VOLKSWAGEN

Project objective - high performance, low cost stack design and proof of critical mass manufacturing processes



ZSW

Automotive manufacturers, suppliers and researchers in one team

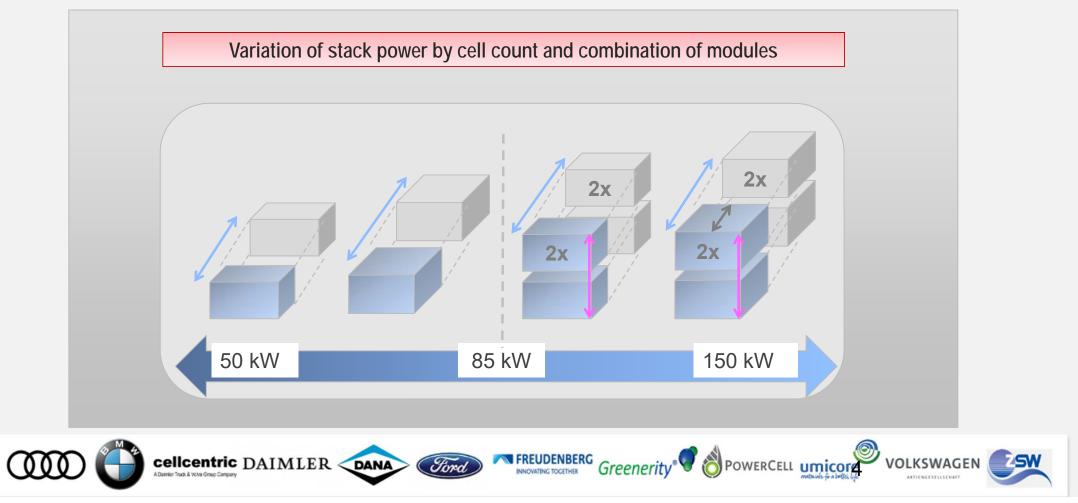
Collaboration model along value chain to fully utilize expertise

For

VOLKSWAGEN

ANTIENGESELLSCHAFT

- ✓ Cross-functional team work/
- ✓ Focus on critical path/
- ✓ Monitoring of interfaces/
- ✓ Joint gap analysis and mitigation/


APO ZSW Projektplanung, Koordinierung, Administration, QS-Koordinierung (BMW)								
AP1 vw	AP2 Umicore	AP3 Greenerity	AP4 DANA	AP5 PCS/PCG	AP6 zsw	AP7 PCS/PCG	AP8 zsw	AP9 zsw
Stack- Spezifikation & Assessments	Katalysator- und GDL-Entwicklung	MEA-Entwicklung	BPP-Entwicklung	Stack-Design	Stack-Test & Validierung	Stack-Fertigungs- entwicklung & Erprobung	Nutzungskonzept, Dissemination	Wissenschaftliche Begleitforschung
1.1 System- Anforderungen & Packaging	2.1 Kat-Fertigungs- Entwicklung & Kostensenkung	3.1 Membran, Katalysator & GDL Auswahl	4.1 Spezifikation metallische BPP	5.1 Konzeptentwicklung & Komponenten - Spezifikation	6.1 Testprogramm, Planung & Koordinierung	7.1 Potenzialanalyse, Prozessdesign & Simulation	8.1 Industrielles Nutzungskonzept Automotive	9.1 MEA-Mikro/Nano- Struktur
1.2 Betriebsbedingungen & Betriebsstrategie	2.2 Katalysatorfertigung & Lieferung	3.2 MEA-Entwicklung mit ausgewählten Materialien	4.2 Material- & Beschichtungs- Konzepte	5.2 Stack-Konstruktion	6.2 Leistungstests	7.2 Aufbau, Validierung & Optimierung einzelner Teilprozesse	8.2 Industrielles Nutzungskonzept andere Apps	9.2 Strömungsverhalten Zelle/Stack
1.3 Stack-Spezifikation	2.3 GDL- Fertigungs- entwicklung	3.3 MEA-Tests & Qualifikation	4.3 Verteilerplatten- Konstruktion & Schnittstellen	5.3 Komponenten- Beschaffung & Stack- Fertigung	6.3 Dauertests	7.3 Konzept Fertigung 30000 Einheiten	8.3 Dissemination	9.3 Stack- Betriebsverhalten
1.4 Stack-Kostenanalyse & Verfolgung	2.4 GDL- Anpassung & Auswahl	3.4 MEA-Muster- Fertigung & Lieferung	4.4 BPP-Korrosionstest		6.4 Umweittests	7.4 Konzept In-Line- Prüfung		9.4 Stack-Herstelltechnik
	2.5 GDL- Fertigung		4.5 BPP-Muster- Fertigung & Lieferung		6.5 Konstruktions- Prüfung & Änderungsdienst	7.6 Potentialbewertung		9.5 Anforderungen und Potential sonstige Apps
			4.6 BPP-Fertigungs- Entwicklung					9.6 Entwicklungsstand/ Benchmarks

2SW

Scalability to enable various power and packaging requirements

ASI stack product features outstanding properties

★ Sources:

https://www.bing.com/search?q=New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+-+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+Hydrogen+Fuel+Cell+Electric+Vehicle+--+Under+The+Skin+-+FuelCellsWorks&ge=Suche&qs=n&form=QBRE&sp=-New+Mirai+New+Mir

1&pq=new+mirai+hydrogen+fuel+cell+electric+vehicle+--+under+the+skin+--+fuelcellsworks&sc=1-

79&sk=&cvid=09026BC6DDB04D84973981FB53E12546&ghsh=0&ghacc=0&ghpl=)

https://www.ballard.com/about-ballard/newsroom/news-releases/2020/09/14/ballard-launches-industry-leading-high-power-density-fuel-cell-stack-for-vehicle-propulsion

Functionality and robustness validated in full automotive test program

86 stacks with more than 30 000h operation in

automotive load cycles.

1

500 1 -I.S.set [A] 450 0,9 T.Si.CL [°C] U.S.AveCell [V] 400 0,8 U.S.MaxCell [V] U.S.MinCell [V] 0.7 350 [2] ³⁰⁰ 250 [2] ²⁵⁰ 200 0,6 Anodenreaktivie 0,5 2 und Luft-Start 0,4 150 0,3 100 0,2 Functiona 50 0,1 Cold-Soak Cold-Soal

Accelerated testing

3,40 Runtime [h] 4,40

5,40

6,40

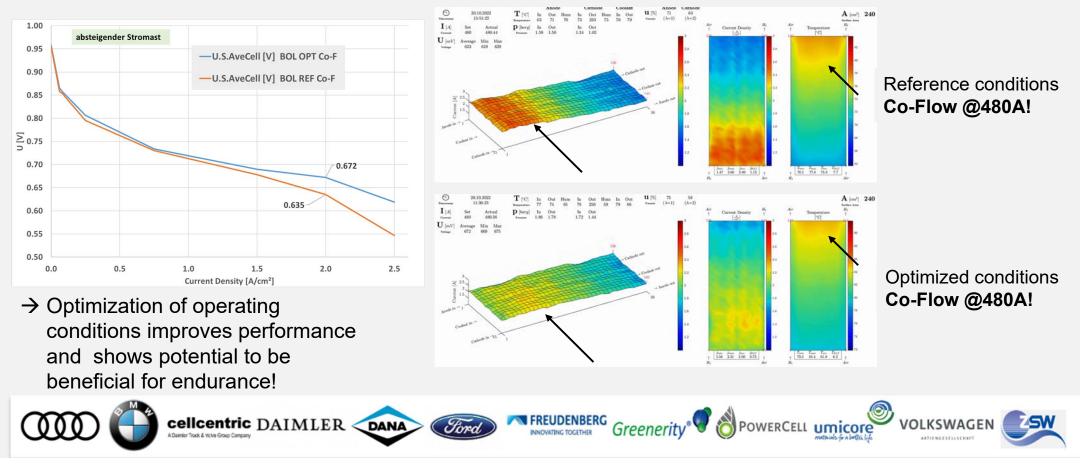
Thermal stress by regular soak times

2,40

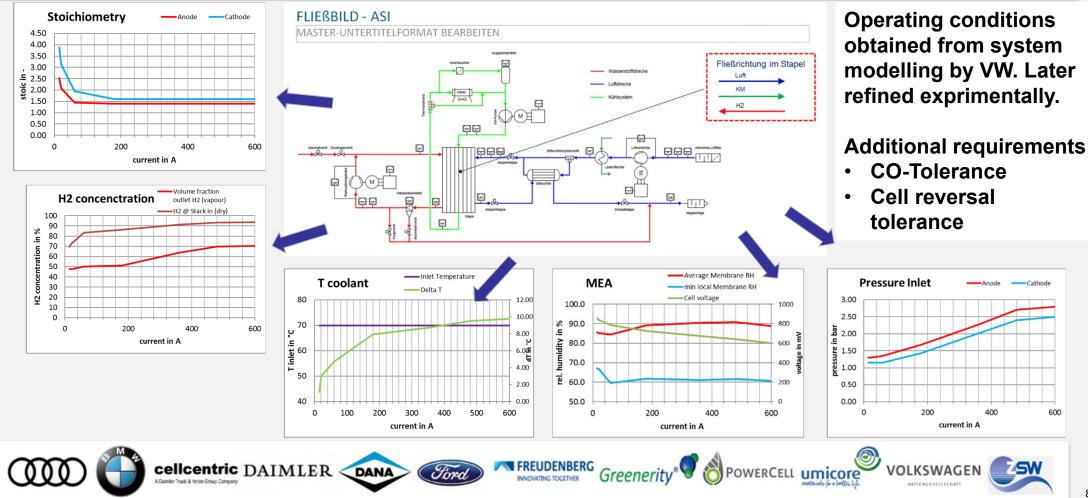
- More than 2400 enforced air-air-starts
- Instant dynamic operation in cold condition
- Regular hot operation

1,40

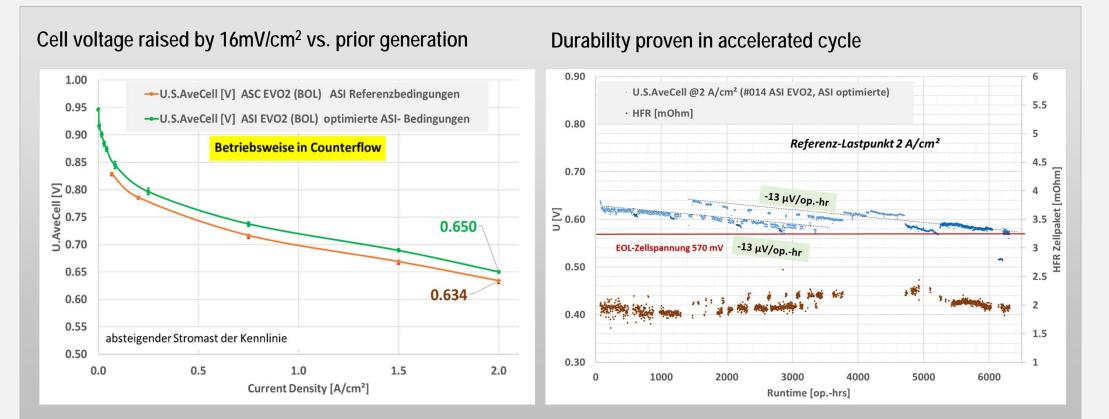
0,40



Optimization of Operating Conditions (Stack #21)

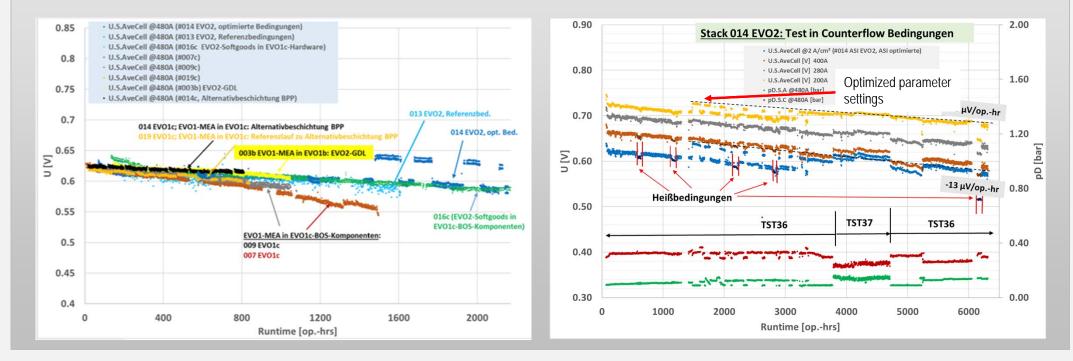


Example: Operation in Co-Flow



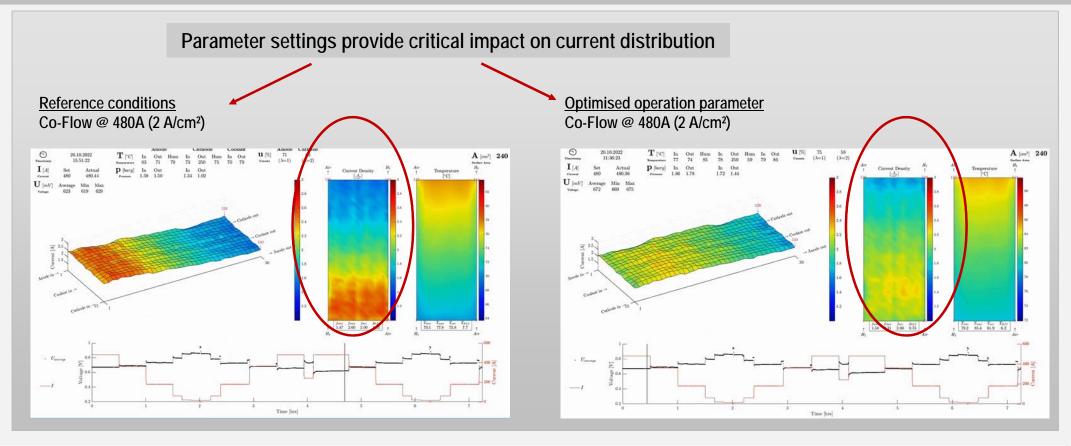
Stack Operating Conditions Were Based on a System Model

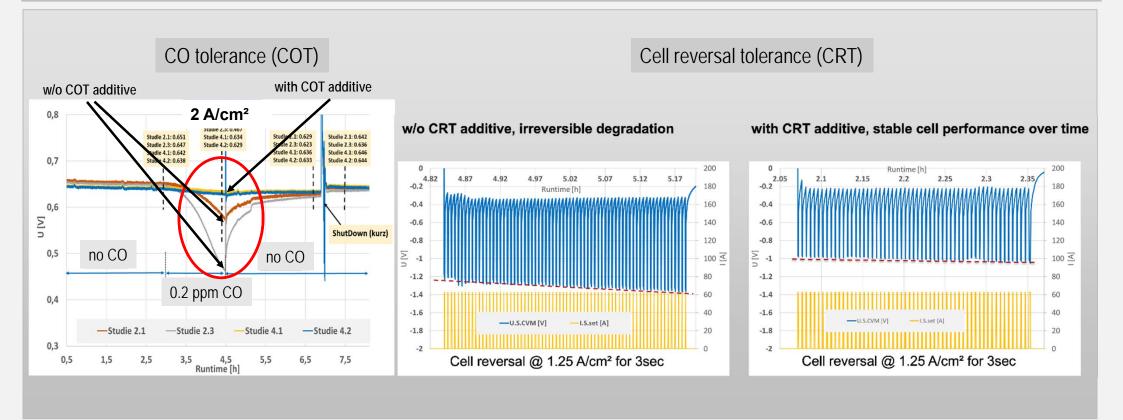
Various contributions were delivered to a challenging design...



Strong gains by design, optimised component fit and parameter settings

Reduction of stack degradation over development

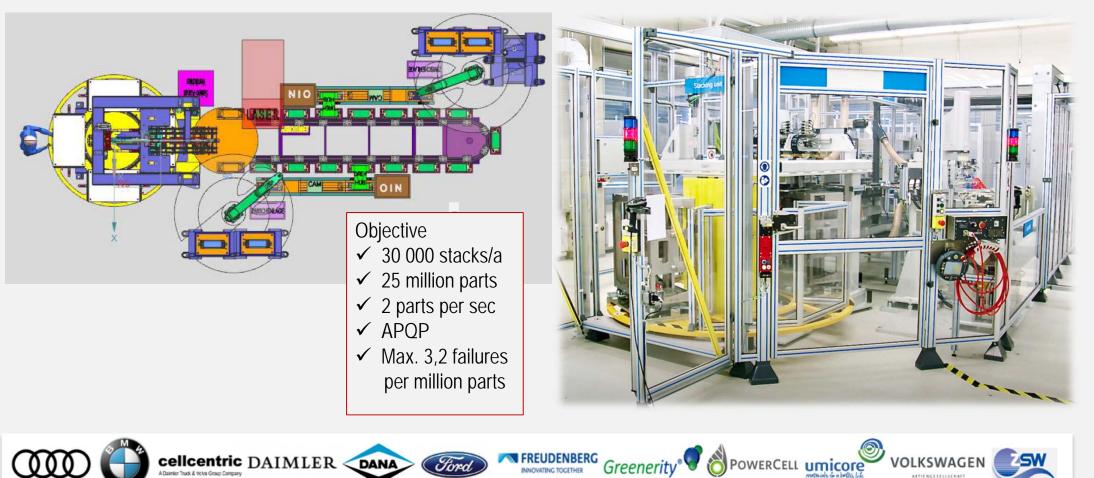

Increase of cell voltage by tuning operation parameters


Current distribution tuned to supporting durability


CO and cell reversal tolerance for more robustness under severe conditions autostack industrie

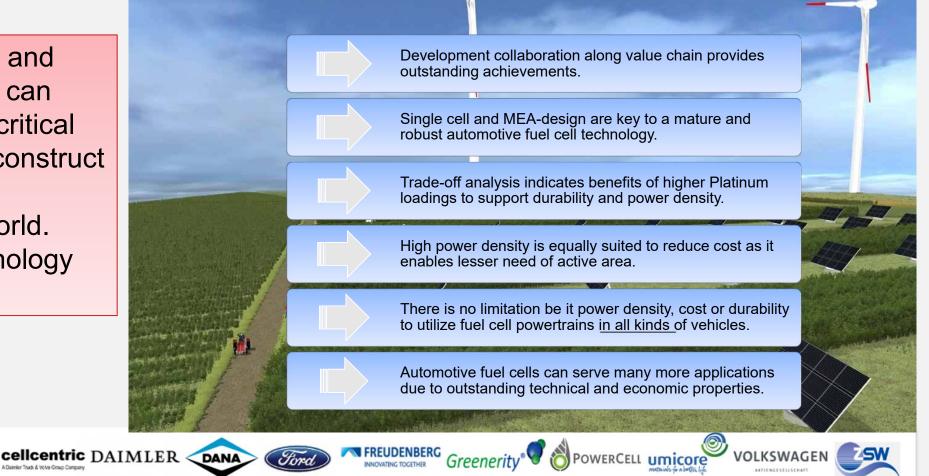
In-deep cost-to-manufacturing analysis reflecting actual cost levels

Pt-content 0.4mg/cm² ; including CRT/COT; Pt-price 883\$/tr.oz.; 1\$=0.91€ (July-Sep 2019)


Robotic assembly proven for manufacturing of 10 000 stacks/a

Automated assembly for 30 000/a stacks meets principal requirements

Energy security requires immediate and balanced action



Final considerations in support of vehicle electrification strategy

Fuel cells and hydrogen can deliver a critical tool to reconstruct a volatile energy world. The technology is there.

Thank you for your attention!

ludwig.joerissen@zsw-bw.de andre.martin-nc@t-online.de

