AERO Hydrogen & Battery Summit 2025, Friedrichshafen, Germany

Challenges for the Optimisation of **Hybrid-Electric Propulsion Systems**

Dr.-Ing. Wilm Friedrichs Head of Aerodynamics and Aircraft Design

ZHAW Zurich University of Applied Sciences School of Engineering ZAV Centre for Aviation Winterthur, Switzerland

Hall A5 Booth 215 April 9-12, 2025

School of Engineering

Visit us at the AERO Friedrichshafen

Short distances, strong partnerships: Training and technology "Made in Switzerland"

- Clean sheet preferred
- Retrofit for demonstration
- Aircraft design
- Propulsion type • Mostly propeller aircraft
- Obviously still many challenges
- <u>Components</u> Lots of progress and new solutions

Battery • Only for short ranges

Hybrid-Electric Propulsion Systems

Trends at the AERO Hydrogen & Battery Summit 2024

Moderate improvement of energy density

Challenges for the Optimisation of Hybrid-Electric Propulsion Systems Overview

- Aircraft missions
- Airspeed, range, altitude, size
- Technology review
- Range & endurance
- Efficiency & sustainability
- Key challenges

Propeller Aircraft Missions

Size, Range, and Airspeed

Mission Mostly used for shorter direct or feeder flights

Correlation

- Shorter range
 - Fewer seats
 - Lower speeds

2.5
2.0
1.5
1.0
0.5
0.0

Propeller Aircraft Missions

Flight Envelope

- Propellers are most efficient at moderate airspeeds
- At higher Mach numbers transonic effects result in noise and lower efficiency

Typical multi-engine piston

- 130 200 kn
- Ceiling FL 150 250
- Range 1,000 2,000 km

Typical turboprop

- 260 330 kn
- Ceiling FL 250 300
- Range 1,500 2,500 km

Zurich University of Applied Sciences

MACH NUMBER

Range Characteristics: Breguet Equations

• Jet:
$$R = \frac{2}{TSFC*g} \frac{\sqrt{C_L}}{C_D} \sqrt{\frac{2}{\rho S}} \left[\sqrt{W_1} - \sqrt{W_2} \right]$$

• High altitude beneficial

• Propeller:
$$R = \frac{\eta_p}{BSFC*g} \frac{C_L}{C_D} \int_{W_2}^{W_1} \frac{dW}{W} = \frac{\eta_p}{BSFC*g} \frac{C_L}{C_D} ln \left(\frac{1}{1 - \frac{m_{fuel}}{MTOM}}\right)$$

• No apparent altitude dependency for propeller

• BSFC not valid for battery, use of BSEM • No consumption of fuel mass

• Battery-powered propeller: $R = \frac{\eta_p}{BSEM * g} \frac{C_L}{C_D} \frac{m_{Bat}}{MTOM}$

Typical Fuel Consumption

Zurich University of Applied Sciences

el mass flow per brake power

$$\frac{1}{\frac{1}{Avgas} \eta_{Piston}} = \frac{1}{12.14 \frac{kWh}{kg}} = 0.28 \frac{kg}{kWh}$$

Turboprop fuel mass flow per brake power

$$=\frac{1}{e_{JetA1}\eta_{Turboprop}} = \frac{1}{11.99\frac{kWh}{kg}} = 0.33\frac{1}{kg}$$

er brake energy

$$\frac{1}{kt} = \frac{1}{400 \frac{Wh}{kg}} = 2.8 \frac{kg}{kWh}$$

Fuel cell including storage mass and electric motor efficiency $BSEM_{FC} = \frac{1}{e_{H2} \frac{m_{H2}}{m_{Tank}}} \eta_{FC} \eta_{EM} = \frac{1}{33.31 \frac{kWh}{kg}} 15\% 45\%$

Mass over Endurance

$$\frac{1}{kW} = \frac{kW}{kg} = \frac{kW}{kg}$$

0

Zurich University of Applied Sciences

120 Time [min]

60

Fuel Cell Hybrid Propulsion System

- Fuel cell can be sized for cruise
- Less mass, but also less efficiency
- Might be viable for other reasons, e.g. safety, dynamic behaviour

Zurich University of Applied Sciences

Sources: Frischknecht

Zurich University of Applied Sciences

School of Engineering \mathbf{Z}

Time [min]

Oversizing

<u>Climb gradient requirements</u>

- Oversizing with regard to cruise power is necessary
- Less oversizing required with more redundance

Redundance

- Electric motors and fuel cells can be scaled better than piston/turboprops
- Probability of failure goes up with number of systems
- Complexity goes up
- Propeller efficiency very much dependent on thrust loading

Zurich Universi of Applied Science

40

Oversized Fuel Cell

- High initial mass, better efficiency
- Lower mass only for long flights
- Also less cooling drag
 - 50% efficiency \rightarrow 50% heat \rightarrow 1/1
 - 40% efficiency \rightarrow 60% heat \rightarrow 1/1.5
- Small heat loss with exhaust compared to piston/turboprop

[kg/kWh] w ma Specific - N useful energy output (15 - 32%)

0

Sources: Stobart et al.

Zurich University of Applied Sciences

School of

Time [min]

60

Power Setting

Aircraft

- Best range at best L/D
- Propeller more efficient at higher speed (up to transonic)

Piston engine

- Usually an optimum around 70 – 80% of rated power
- Leads to high cruise speeds

Fuel cell

- Better efficiency at low power settings
- Lower cruise speeds interesting

CURVE NO. 11259

Sources: Ferrara et al., Lycoming, Gudmundsson

Zurich University of Applied Sciences

DRAG THRUST AND

 m_{H_2}

(kg/h)

Efficiency Definitions

Passenger

Mobility Expenses, time

Efficiency Useful output Input

Operator

Revenue Expenses

Safety Maintenance Flexibility Infrastructure Zurich University of Applied Sciences

Safety Emissions (incl. noise) Sustainability

Certification (incl. safety) Thermal management Lightweight components Efficient components **Overall efficiency**

Changing Efficiency Definitions

Changing preferences: How much is my time worth?

Zurich University of Applied Sciences

Supporting sustainable solutions

Society

Mobility Emissions

Passenger

Mobility Expenses, time

Efficiency

Useful output Input

Operator

Revenue Expenses

Zurich University of Applied Sciences

Aircraft design

RangePayloadLiftFuelMTOWDrag

Sustainable design objectives

Typical Energy Consumption

Emissions based rating

- Complex topic

Rating of energy use

- input to the aircraft

- payload

Zurich University of Applied Sciences

• Typical measure: g CO2 / (person km)

Ratio of useful energy for propulsion per energy

• Neglects emissions from production, logistics,... Still useful for the subsystem «aircraft»

• But also neglects useful output, i.e. transported

Weighted Efficiency

Efficiency, but taking into account the ratio between payload to MTOW

Simplified model

- 40% structural mass & systems
- *L/D* 15
- 80% propeller efficiency

<u>Result</u>

• Heavier systems can still be more energy-efficient

Mission

Sources: Chronotrains.com, openstreetmap, Elfly, Dufour

Mission

Sources: Chronotrains.com, openstreetmap, Elfly, Dufour

Impact on Payload-Range

- More sensitive to deviations from design point

• Less flexible, (almost) no trade-off payload vs fuel

Sources: Husemann et al, Young, IATA

Challenges for the Optimisation of Hybrid-Electric Propulsion Systems The Challenges

Market & society

- Battery-electric vs. ground-based transport
- More direct and shorter connections
- Fuel cell and hybrid can be more sustainable solutions
- Politics will have huge impact on competitiveness

Propulsion system

- Hydrogen storage can change everything
- Thermal management
- Mass vs. efficiency vs. drag optimisation
- Safety and certification
- Human-machine interface for complex system
- More monitoring than maintenance

Aircraft design

- From GA & commuter to larger aircraft
- Optimised for certain mission
- Optimum dependent on many parameters
- Short range, low airspeeds, small capacity, but heavy
- L/D important, high aspect ratios

Dr.-Ing. Wilm Friedrichs Head of Aerodynamics and Aircraft Design

ZHAW Zurich University of Applied Sciences School of Engineering ZAV Centre for Aviation Winterthur, Switzerland

Booth 215 April 9-12, 2025 Zurich University of Applied Sciences

School of Engineering

ZAV Centre for Aviation

Visit us at the **AERO Friedrichshafen**

capzlog.aer

Short distances, strong partnerships: Training and technology "Made in Switzerland"

Efficiency & Sustainability University of Michigan Stratifly Tool https://stratifly.engin.umich.edu/gui

