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Hybrid-Electric Propulsion Systems

Battery 
• Only for short ranges
• Moderate improvement of energy density

Components
• Lots of progress and new solutions
• Obviously still many challenges

Propulsion type
• Mostly propeller aircraft

Aircraft design
• Retrofit for demonstration
• Clean sheet preferred

Trends at the AERO Hydrogen & Battery Summit 2024

Vaeridion, Elfly, APUS
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Challenges for the Optimisation of 
Hybrid-Electric Propulsion Systems

• Aircraft missions

• Airspeed, range, altitude, size

• Technology review

• Range & endurance

• Efficiency & sustainability

• Key challenges

Overview

IATA
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Propeller Aircraft Missions

Mission
Mostly used for shorter 
direct or feeder flights

Correlation
• Shorter range

• Fewer seats
• Lower speeds

Size, Range, and Airspeed

Delta Airlines, Walton, Adler
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Propeller Aircraft Missions

• Propellers are most efficient at 
moderate airspeeds

• At higher Mach numbers 
transonic effects result in noise 
and lower efficiency

Typical multi-engine piston
• 130 – 200 kn
• Ceiling FL 150 – 250
• Range 1,000 – 2,000 km

Typical turboprop 
• 260 – 330 kn
• Ceiling FL 250 – 300
• Range 1,500 – 2,500 km

Flight Envelope

Alves, Gudmundsson
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Technology Review

• Jet: 𝑅𝑅 = 2
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∗𝑔𝑔
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• High altitude beneficial

• Propeller: 𝑅𝑅 = 𝜂𝜂𝑝𝑝
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• No apparent altitude dependency for propeller

• Battery-powered propeller: 𝑅𝑅 = 𝜂𝜂𝑝𝑝
𝐵𝐵𝑇𝑇𝐵𝐵𝐵𝐵∗𝑔𝑔
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• BSFC not valid for battery, use of BSEM
• No consumption of fuel mass

Range Characteristics: Breguet Equations
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Technology Review

Piston engine fuel mass flow per brake power 

𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1

𝑒𝑒𝐴𝐴𝐴𝐴𝑔𝑔𝐴𝐴𝑃𝑃 𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
=

1

12.14 𝑘𝑘𝑊𝑊𝑘
𝑘𝑘𝑘𝑘 30%

= 0.28
𝑘𝑘𝑘𝑘
𝑘𝑘𝑊𝑊𝑘

Turboprop fuel mass flow per brake power 

𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇 =
1

𝑒𝑒𝐽𝐽𝐽𝐽𝑃𝑃𝐴𝐴1 𝜂𝜂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇
=

1

11.99 𝑘𝑘𝑊𝑊𝑘
𝑘𝑘𝑘𝑘 25%

= 0.33
𝑘𝑘𝑘𝑘
𝑘𝑘𝑊𝑊𝑘

Battery mass per brake energy

𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵𝐵𝐵 =
1

𝑒𝑒𝐵𝐵𝐴𝐴𝑃𝑃 𝜂𝜂𝐵𝐵𝐵𝐵
=

1

400𝑊𝑊𝑘
𝑘𝑘𝑘𝑘 90%

= 2.8
𝑘𝑘𝑘𝑘
𝑘𝑘𝑊𝑊𝑘

Fuel cell including storage mass and electric motor efficiency

𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀𝑇𝑇𝑇𝑇 =
1

𝑒𝑒𝐻𝐻2
𝑚𝑚𝐻𝐻2
𝑚𝑚𝑇𝑇𝐴𝐴𝑃𝑃𝑎𝑎

𝜂𝜂𝑇𝑇𝑇𝑇𝜂𝜂𝐵𝐵𝐵𝐵
=

1

33.31 𝑘𝑘𝑊𝑊𝑘
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= 0.45
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Typical Fuel Consumption
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Technology Review

Mass over Endurance
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Technology Review

• Fuel cell can be sized for cruise
• Less mass, but also less efficiency
• Might be viable for other reasons, 

e.g. safety, dynamic behaviour

Fuel Cell Hybrid Propulsion System

Frischknecht
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Technology Review

Climb gradient requirements
• Oversizing with regard to cruise 

power is necessary
• Less oversizing required with more 

redundance

Redundance
• Electric motors and fuel cells can be 

scaled better than piston/turboprops
• Probability of failure goes up with 

number of systems
• Complexity goes up
• Propeller efficiency very much 

dependent on thrust loading

Oversizing
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All engines operating
Critical loss of thrust 2 engines L3LS
Critical loss of thrust 4 engines L3LS
Critical loss of thrust 8 engines L3LS
Critical loss of thrust 2 engines L3HS L4
Critical loss of thrust 4 engines L3HS L4
Critical loss of thrust 8 engines L3HS L4
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Technology Review

• High initial mass, better efficiency
• Lower mass only for long flights
• Also less cooling drag

• 50% efficiency → 50% heat → 1/1
• 40% efficiency → 60% heat → 1/1.5

• Small heat loss with exhaust 
compared to piston/turboprop

Oversized Fuel Cell

Stobart et al.
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Technology Review

Aircraft
• Best range at best L/D
• Propeller more efficient at 

higher speed (up to transonic)

Piston engine
• Usually an optimum around 

70 – 80% of rated power
• Leads to high cruise speeds

Fuel cell
• Better efficiency at low 

power settings
• Lower cruise speeds 

interesting

Power Setting

Ferrara et al., Lycoming, Gudmundsson
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Efficiency
Useful output

Input

Society
Mobility

Emissions

Aircraft 
design

Range
Fuel

Payload
MTOW

Lift
Drag

Operator
Revenue
Expenses

Passenger
Mobility

Expenses, time

Efficiency & Sustainability

Efficiency Definitions

Safety
Maintenance

Flexibility
Infrastructure

Time savings
Costs

Comfort

Safety
Emissions (incl. noise)

Sustainability

Certification (incl. safety)
Thermal management

Lightweight components
Efficient components

Overall efficiency
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Efficiency
Useful output

Input
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Efficiency & Sustainability

Changing Efficiency Definitions

Supporting
sustainable

solutions

Changing
preferences: 

How much is my
time worth?

Sustainable
design 

objectives
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Efficiency & Sustainability

Emissions based rating
• Typical measure: g CO2 / (person km)
• Complex topic

Rating of energy use
• Ratio of useful energy for propulsion per energy

input to the aircraft
• Neglects emissions from production, logistics,…
• Still useful for the subsystem «aircraft»
• But also neglects useful output, i.e. transported

payload

Typical Energy Consumption
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Efficiency & Sustainability

Efficiency, but taking into account the 
ratio between payload to MTOW

Simplified model
• 40% structural mass & systems
• L/D 15
• 80% propeller efficiency

Result
• Heavier systems can still be more 

energy-efficient

Weighted Efficiency

Ferrara et al., Stobart et al.
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Efficiency & Sustainability

Mission

Chronotrains.com, openstreetmap, Elfly, Dufour



Zurich University of Applied Sciences Sources:

Efficiency & Sustainability

Mission

Chronotrains.com, openstreetmap, Elfly, Dufour
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Efficiency & Sustainability

• Less flexible, (almost) no trade-off payload vs fuel
• More sensitive to deviations from design point

Impact on Payload-Range

Husemann et al, Young, IATA
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Challenges for the Optimisation of 
Hybrid-Electric Propulsion Systems

Market & society
• Battery-electric vs. ground-based transport
• More direct and shorter connections
• Fuel cell and hybrid can be more sustainable solutions
• Politics will have huge impact on competitiveness

Propulsion system
• Hydrogen storage can change everything
• Thermal management
• Mass vs. efficiency vs. drag optimisation
• Safety and certification
• Human-machine interface for complex system
• More monitoring than maintenance

Aircraft design
• From GA & commuter to larger aircraft
• Optimised for certain mission
• Optimum dependent on many parameters
• Short range, low airspeeds, small capacity, but heavy
• L/D important, high aspect ratios

The Challenges
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Efficiency & Sustainability

https://stratifly.engin.umich.edu/gui

University of Michigan Stratifly Tool

Adler & Martins
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