

Holger Kuhn ZAL GmbH

ZAL Center of Applied Aeronautical Research

ZAL GmbH Business Areas

ZAL Research Infrastructures

Project planning and operational support in close cooperation with industry partners (e.g. Airbus or Lufthansa Technik)

- Requirements definition, planning and supplier selection
- Implementation coordination, technical approval and more

ZAL TechCenter

Leasing & building operation

Rental of laboratories, office and hangar space

- Organization of general services (e.g. reception, restaurant, maintenance, cleaning).
- Operation of central infrastructures (auditorium, meeting rooms, workshop, building equipment and devices).

ZAL Innovation Services

Expertise in 8 technology fields with a thematic focus in close cooperation with industry partners

- Funding projects: Development of competencies and expertise
- Industry projects: Concentration on thematic or technological niches

FoLuHH

Research Network Hamburg

- Building networks and events
- Initiation of R&T networks and projects with partners from industry, universities and SMEs
- Obtaining funding from European and German aeronautics research funds

ZAL Innovation Services - R&D Unit of ZAL GmbH

Advanced Materials

Acoustic & Vibration

Robot-guided Additive Manufacturing

Automation

Automation Design & Evaluation

Al-enforced Robotics

Functional Prototypes for Production Environment

Data & Power Networks

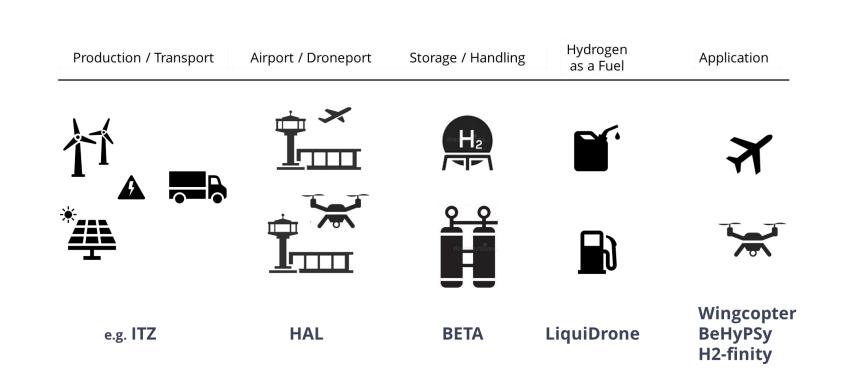
Connected
Aircraft Cabin &
Internet of Things

Communication Technology & Distributed Systems

Fuel Cell Systems & Power Networks

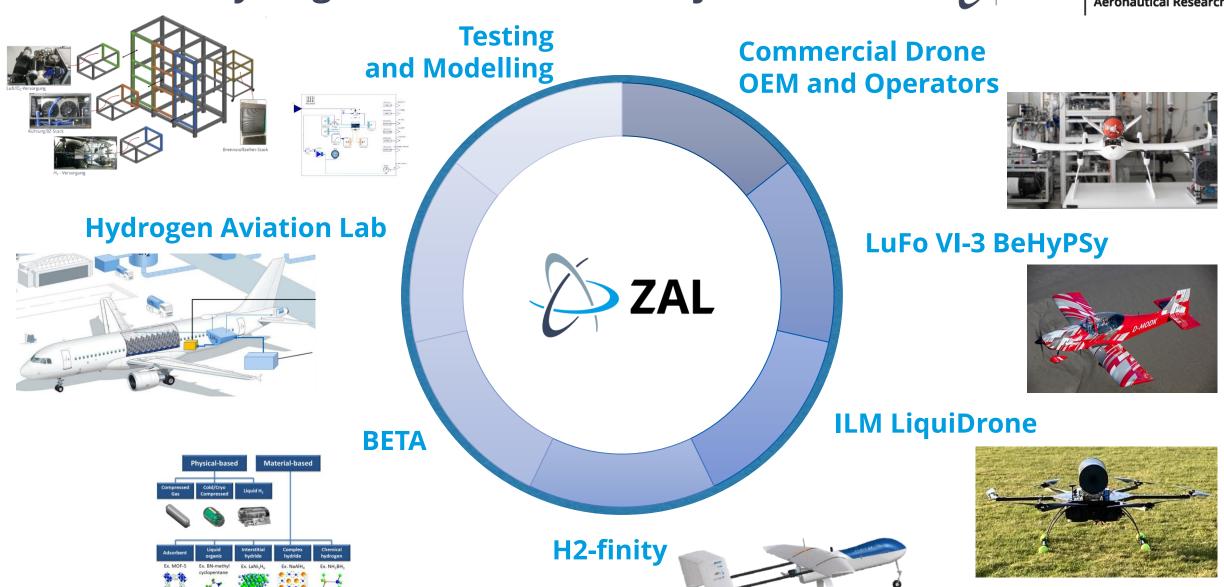
Along the Hydrogen Chain

Previous Projects:


- Bilbo
- ZALbatros I/II
- ALF
- BETA
- LiquiDrone
- Hydrogen Aviation Lab
- H2-finity

Current Projects:

- Wingcopter
- BeHyPSy
- iPREFER
- HYDRO-BUNNY
- BSR Hydrogen Airport


Perspectively:

H2-BAT

Fuel Cell & Hydrogen – selected ZAL Projects

Why?

Motivation

- Usually only battery-electric propulsion systems for multicopters
 - Relatively short flight times of typically less than 1h
 - ~2 Wh/kg/min ±10% for multicopters
- "Small" 2–/4–stroke combustion engines or turbines for larger drones (fixed wing as well as rotorcraft)

 With fuel cells we open use cases in sensitive areas AND where long flight times are mandatory

Hexacopter ZALbatros II

Flying testbed for UAV-applications under real operating conditions.

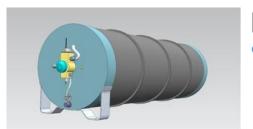
Total Mass ~ 12 kg (in-house optimised structure)

2 kg **Payload** (increased from 500 g)

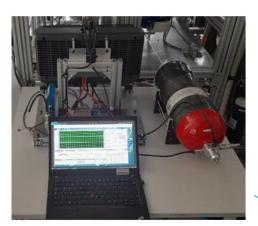
Type 4, 300 bar, 7.2 L, 3.3 kg H₂ storage

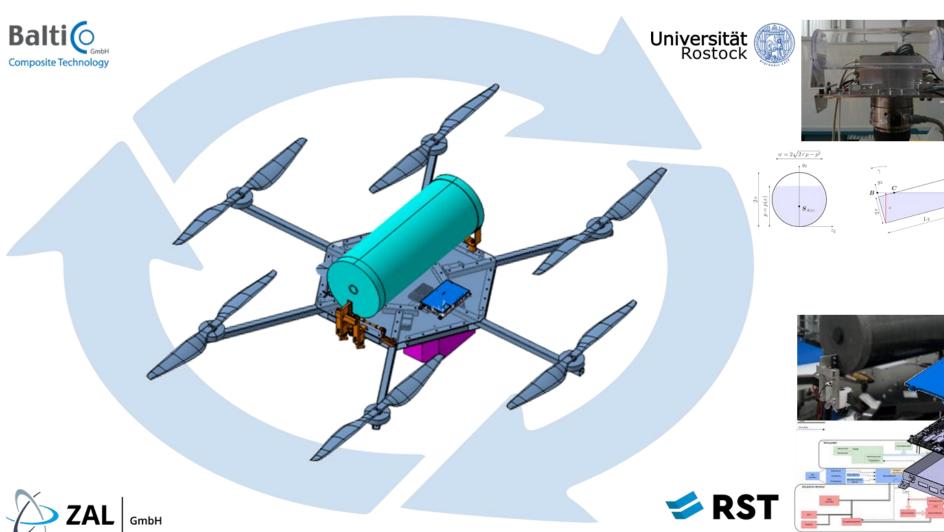
Flight Duration

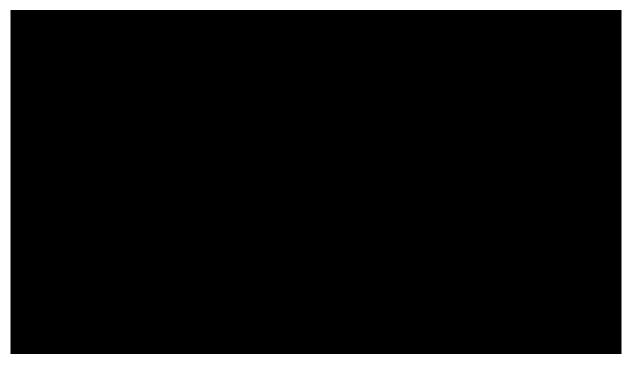
> 2 h



Successful Long Endurance Flight


- Long endurance flight in September 2020
- Flight time ca. **2h10min**
 - Windy and turbulent conditions
- 300bar Type 4 pressure vessel
- Propulsion system
 - 2x 800W max. continuous fuel cell systems
 - 2x 1.4kW max. peak power


Project LiquiDrone


LiquiDrone - Status of Development

The First Hydrogen-Fuel Cell based Aircraft

Common Design of Propulsion Systems

Fuel Cell System

Motor Controller

Electric Motor

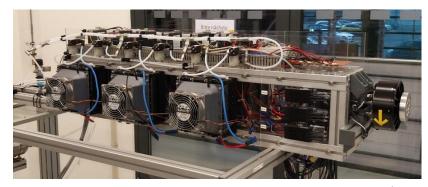
If one (sub-) component fails, the entire propulsion systems fails

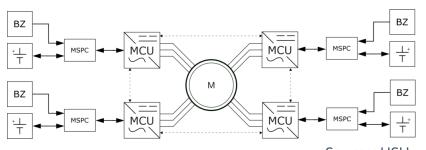
Source: Intelligent Energy

Source: MGM Compro only as an example

Source: MGM Compro only as an example

LuFo VI-3 BeHyPSy - Our Approach


Airbus H2-Torque Concept ¹



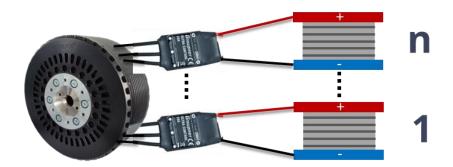
NIP Project "BETA"

Partners: Airbus, DLR, HSU, ZAL

Source: Airbus

Source: HSU

¹ German Aviation Innovation Award in the category "Reduction of emissions", 2019


LuFo VI-3 BeHyPSy

Development, integration and testing of an innovative fuel cell-based propulsion system.

Expected Benefits of the Propulsion System

- Architecture allows for removing of liquid cooling system
 - Fully air-cooled systems and components
 - Weight reduction
 - Less maintenance and increased reliability
- Multi-phase electric motor
 - each phase is supplied by >1 fuel cell system leading to smaller fuel cells

Breezer Aircraft GmbH & Co. KG
University of Applied Science Hamburg
Helmut-Schmidt-University Hamburg
Rostock-System Technik GmbH
ZAL GmbH

Zentrum für Brennstoffzellentechnik GmbH

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Project Hydrogen Aviation Lab

Overview

- Equipment of an A320 with an on-board liquid hydrogen tank, a fuel cell, and a ground based liquid hydrogen storage and supply unit
- Design and test of MRO and ground processes of future liquid hydrogen aircraft

Fuel Cell & Hydrogen Topics

GET IN TOUCH!

Dr.sc. Holger Kuhn

Senior Expert Fuel Cell Systems ZAL Innovation Service

+49 40 248 595 158 holger.kuhn@zal.aero www.zal.aero

ZAL Zentrum für Angewandte Luftfahrtforschung GmbH

Hein-Saß-Weg 22 21129 Hamburg, Germany

+49 40 248 595 0 info@zal.aero Zal.aero